Foundation for Success

NATIONAL LEVEL SCIENCE TALENT SEARCH EXAMINATION (UPDATED)

```
CLASS - 9
```

Question Paper Code : UN489

KEY

1. B	2. B	3. C	4. A	5. C	6. D	7. D	8. A	9. B	10. D
11. C	12. A	13. B	14. C	15. C	16. B	17. D	18. C	19. D	20. A
21. C	22. D	23. B	24. C	25. B	26. C	27. D	28. A	29. D	30. B
31. B	32. C	33. B	34. D	35. C	36. C	37. B	38. B	39. C	40. D
41. D	42. D	43. A	44. D	45. A	46. C	47. A	48. C	49. B	50. D
51. B	52. B	53. C	54. D	55. D	56. C	57. A	58. A	59. D	60. C

MATHEMATICS

1. (B) Cost : Join EC

Area of $\triangle A B D=\frac{1}{3}$ of area of $\triangle A B C$
$=120 \mathrm{~cm}^{2}$

$\therefore \quad$ Area of $\triangle \mathrm{ABE}=$ Area of $\triangle \mathrm{ADE}$
$=\frac{1}{2} \times 120 \mathrm{~cm}^{2}=60 \mathrm{~cm}^{2}$

In $\triangle B C D, C E$ is median \Rightarrow Area of $\triangle B C D$
$\therefore \quad$ Area of $\triangle C D E=$ Area of $\triangle B C E$

$$
=\frac{1}{2} \times 240 \mathrm{~cm}^{2}=120 \mathrm{~cm}^{2}
$$

$\therefore \quad \frac{E F}{E A}=\frac{\text { Area of } \triangle B E F}{\text { Area of } \triangle A B E}=\frac{\text { Area of } \triangle C E F}{\text { Area of } \triangle A C E}$
$\Rightarrow \frac{x}{60}=\frac{120-x}{(60+120)} \Rightarrow \frac{x}{6 \sigma_{1}} \times 180^{3}=120-x$
$4 x=120$
Area of $\triangle \mathrm{BEF}(x)=30 \mathrm{~cm}^{2}$
02. (B) In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=180^{\circ}-125^{\circ}=55^{\circ}$

$\therefore \angle \mathrm{ABC}=\angle \mathrm{ACB}=55^{\circ}$
$[\because$ Given in $\triangle A B C, A B=A C]$
In $\triangle \mathrm{ACD}, \angle \mathrm{ACB}=x+25^{\circ}$
$\therefore x+25^{\circ}=55^{\circ}$
$x=55^{\circ}-25^{\circ}=30^{\circ}$
03. (C)

$$
x-\sqrt{2}\left|\begin{array}{c}
x^{3}-2 \sqrt{2} \\
x^{3}-\sqrt{2} x^{2} \\
(-)(+) \\
\hline \sqrt{2} x^{2}-2 \sqrt{2} \\
\sqrt{2} x^{2}-2 x \\
(-)(+) \\
\hline 2 x-2 \sqrt{2} \\
2 x-2 \sqrt{2} \\
(-) \quad(+) \\
0
\end{array}\right| \quad\left(x^{2}+\sqrt{2} x+2\right)
$$

(OR)
$\frac{x^{3}-2 \sqrt{2}}{x-\sqrt{2}}=\frac{x^{3}-(\sqrt{2})^{3}}{x-\sqrt{2}}=\frac{(x-\sqrt{2})\left[x^{2}+\sqrt{2} x+(\sqrt{2})^{2}\right]}{(x-2)}$
04. (A) $\sqrt{10+\sqrt{24}-\sqrt{60}-\sqrt{40}}$

$$
=\sqrt{10+2 \sqrt{6}-2 \sqrt{15}-2 \sqrt{10}}
$$

$$
=\sqrt{10+2 \sqrt{2} \times \sqrt{3}-2 \sqrt{3} \times \sqrt{5}-2 \sqrt{5} \times \sqrt{2}}
$$

$$
=\sqrt{(\sqrt{2})^{2}+(\sqrt{3})^{2}+(\sqrt{5})^{2}+2 \sqrt{2} \times \sqrt{3}-2 \sqrt{5} \times \sqrt{3}-2 \sqrt{3} \times \sqrt{2}}
$$

$$
\begin{aligned}
& =\sqrt{(\sqrt{2}+\sqrt{3}-\sqrt{5})^{2}} \\
& =(\sqrt{2}+\sqrt{3}-\sqrt{5})
\end{aligned}
$$

5. (C) Given $\mathrm{p}(x)=\frac{2 x+1}{x-2}$

$$
\therefore \quad \mathrm{p}\left(\frac{2 x+1}{x-2}\right)=\frac{2\left(\frac{2 x+1}{x-2}\right)+1}{\left(\frac{2 x+1}{x-2}\right)-2}
$$

$$
=\frac{\left[\frac{4 x+2+(x-2)}{x-2}\right]}{\left[\frac{2 x+1-2(x-2)}{x-2}\right]}
$$

$$
=\frac{\left.(4 x+2)^{2}+x-\not 2\right)}{(x-2)} \times \frac{(x-2)}{(2 x+1-2 x+4)}
$$

$$
=\frac{5 x}{5}=x
$$

6. (D) Proudct of two irrational numbers is a real number.
7. (D) $\frac{1}{\sqrt{11}-3}=\frac{1}{\sqrt{11}-3} \times \frac{\sqrt{11}+3}{\sqrt{11}+3}$

$$
=\frac{\sqrt{11}+3}{(\sqrt{11})^{2}-3^{2}}=\frac{\sqrt{11}+3}{11-9}=\frac{\sqrt{11}+3}{2}
$$

Similarly,

$$
\begin{aligned}
& \frac{1}{3-\sqrt{7}}=\frac{3+\sqrt{7}}{2} \\
& \frac{1}{\sqrt{7}-\sqrt{5}}=\frac{\sqrt{7}+\sqrt{5}}{2}
\end{aligned}
$$

$$
\frac{1}{\sqrt{5}-\sqrt{3}}=\frac{\sqrt{5}+\sqrt{3}}{2}
$$

$\therefore \frac{\sqrt{5}+\sqrt{3}}{2}<\frac{\sqrt{7}+\sqrt{5}}{2}<\frac{3+\sqrt{7}}{2}<\frac{\sqrt{11}+3}{2}$
i.e., $\frac{1}{\sqrt{5}-\sqrt{3}}<\frac{1}{\sqrt{7}-\sqrt{5}}<\frac{1}{3-\sqrt{7}}<\frac{1}{\sqrt{11}-3}$
$\Rightarrow \quad \sqrt{5}-\sqrt{3}>\sqrt{7}-\sqrt{5}>3-\sqrt{7}>\sqrt{11}-3$
08. (A) Construction : Notice ' D ' on the major are join $A D$ and CD.

$\angle \mathrm{ADC}=\frac{\angle \mathrm{AOC}}{2}=\frac{130^{\circ}}{2}=65^{\circ}$
$A B C D$ is a cyclic quadrilateral
$\therefore \quad \angle \mathrm{ADC}+\angle \mathrm{ABC}=180^{\circ}$
$65^{\circ}+\angle \mathrm{ABC}=180^{\circ}$
$\angle A B C=180^{\circ}-65^{\circ}=115^{\circ}$
09. (B) Construction draw $E F|\mid A D$ AFED is a parallelogram
$\therefore \quad$ Area of $\triangle \mathrm{APD}=\frac{1}{2}$ area of the parallelogram AFED

Similarly area of $\triangle \mathrm{BPC}=\frac{1}{2}$ area of the parallelogram FBCE
$\therefore \quad$ Area of $\triangle \mathrm{APD}+$ area of $\triangle \mathrm{BPC}=\frac{1}{2}$ [area parallelogram AFED + area of parallelogram FBCE]
$2[$ Area of $\triangle \mathrm{APD}+$ area of $\triangle \mathrm{BPC}]=$ Area of the parallelogram $A B C D$
$\therefore \quad$ Area of the parallelogram
$A B C D=2 \times 24 \mathrm{~cm}^{2}$
$=48 \mathrm{~cm}^{2}$
10. (D)

Construction: AE $\perp C D$ and $B F \perp C D$
$\triangle \mathrm{ADE} \cong \triangle \mathrm{BCF}[\because$ RHS congruency $]$
$\therefore \quad D E=F C[\because C P C T]$
But ABFE is a rectangle
$\therefore \quad E F=A B=32 \mathrm{~cm}$
$\therefore \quad D E=C F=\frac{50 \mathrm{~cm}-32 \mathrm{~cm}}{2}=9 \mathrm{~cm}$
In $\triangle A D E, L E=90^{\circ} \Rightarrow A D^{2}=A E^{2}+E D^{2}$
$41^{2}=9^{2}+A E^{2}$
$41^{2}-9^{2}=A E^{2}$
$(41+9)(41-9)=A E^{2}$
$50 \times 32=\mathrm{AE}^{2}$
$\sqrt{1600}=\mathrm{AE}$
$A E=40 \mathrm{~cm}$
Area of the trapezium ABCD
$=\frac{1}{2} \times A E(A B+C D)$
$=\frac{1}{\not Z_{1}} \times 4 \sigma^{20}(32+50) \mathrm{cm}^{2}$
$=1640 \mathrm{~cm}^{2}$
11. (C) Extend the line $D C$ to a point P, such that $A B|\mid C P$,

Then $\angle \mathrm{BCP}=\angle \mathrm{EDC}=x^{\circ}$
(Corresponding angles)
Also, $\angle \mathrm{ABC}+\angle \mathrm{BCP}=180^{\circ}$
$\Rightarrow \quad \angle B C P=95^{\circ}$
and $\angle \mathrm{BCP}=\angle \mathrm{EDC}=95^{\circ}$
12. (A) Given $3 \pi r^{2}=1848 \mathrm{~cm}^{2}$

$$
\Rightarrow \quad 3 \times \frac{22}{7} \times r^{2}=1848 \mathrm{~cm}^{2}
$$

$$
r=\sqrt{196}=14 \mathrm{~cm}
$$

Volume of hemisphere
$=\frac{2}{3} \times \pi \times 14 \times 14 \times 14 \mathrm{~cm}^{3}$
Given
$\frac{1}{3} \not t \times 7 \times 7 \times h=\frac{2}{3} \times \not t \times 14 \times 14 \times 14$
$\mathrm{h}=\frac{2}{\nexists} \times 14^{2} \times 14^{2} \times 14 \times \not \beta \times \frac{1}{\not 7} \times \frac{1}{\not 7}$
$h=112 \mathrm{~cm}$
$l=\sqrt{\mathrm{h}^{2}+\mathrm{r}^{2}}=\sqrt{112^{2}+7^{2}}$
$=\sqrt{12544+49}=\sqrt{12593} \mathrm{~cm}$
$=112.21 \mathrm{~cm}$
13. (B) Given $x+\frac{1}{x}=\sqrt{5}$

Squaring on both sides
$\left(x+\frac{1}{x}\right)^{2}=\sqrt{5}^{2}$
$x^{2}+2 \times \not x \times \frac{1}{\not x}+\left(\frac{1}{x}\right)^{2}=5$
$x^{2}+\frac{1}{x^{2}}=5-2=3$
Cubing on both sides
$\left(x^{2}+\frac{1}{x^{2}}\right)^{3}=3^{3}$

$$
\begin{aligned}
& \Rightarrow\left(x^{2}\right)^{3}+3 x^{2} \times \frac{1}{x^{2}}\left(x^{2}+\frac{1}{x^{2}}\right)+\left(\frac{1}{x^{2}}\right)^{3}=27 \\
& \Rightarrow x^{6}+3(3)+\frac{1}{x^{6}}=27 \\
& \Rightarrow x^{6}+\frac{1}{x^{6}}=27-9=18
\end{aligned}
$$

14. (C) From the given figure, we have $A D=B C$
$\Rightarrow \quad A D-C D=B C-C D$
[Equal are subtracted from equals]
$\Rightarrow \quad A C=B D$
15. (C) Const draw $\mathrm{QT}|\mid \mathrm{RS}$

$\angle \mathrm{QRS}+\angle \mathrm{RQT}=180^{\circ}[\because$ If the lines are parallel the sum of interior angles lie same to the transversal are supplimentary]
$\therefore \quad \angle \mathrm{RQT}=180^{\circ}-112^{\circ}$
$\angle R Q T=68^{\circ}$
But $\angle \mathrm{OPQ}=\angle \mathrm{PQT}$
[\because Alternative angles]
$\therefore \quad \angle \mathrm{OPQ}=\angle \mathrm{PQR}+\angle \mathrm{RQT}$
$=19^{\circ}+68^{\circ}=87^{\circ}$
16. (B) $\quad \mathrm{LHS}=\frac{4(x+1)+5(x-1)+6}{x^{2}-1}$

$$
\begin{aligned}
& =\frac{4 x+4+5 x-5+6}{x^{2}-1} \\
& =\left(\frac{9 x+5}{x^{2}-1}\right)
\end{aligned}
$$

17. (D) $\frac{15}{\sqrt{10}+\sqrt{20}+\sqrt{40}-\sqrt{5}-\sqrt{80}}$

$$
\begin{aligned}
& =\frac{15}{\sqrt{10}+2 \sqrt{5}+2 \sqrt{10}-\sqrt{5}-4 \sqrt{5}} \\
& =\frac{15}{3 \sqrt{10}-3 \sqrt{5}}=\frac{15}{2((\sqrt{10}-\sqrt{5})} \\
& =\frac{5}{\sqrt{10}-\sqrt{5}} \times \frac{\sqrt{10}+\sqrt{5}}{\sqrt{10}+\sqrt{5}}=\frac{\not p(\sqrt{10}+\sqrt{5})}{\not 5}
\end{aligned}
$$

18. (C)

Given $\mathrm{a}=12.5 \mathrm{~cm}, \mathrm{~b}=12.5 \mathrm{~cm}$ and $\mathrm{c}=15 \mathrm{~cm}$
$\therefore \quad s=\frac{a+b+c}{2}$
$=\frac{12.5 \mathrm{~cm}+12.5 \mathrm{~cm}+15 \mathrm{~cm}}{2}$
$=\frac{4 \sigma^{20} \mathrm{~cm}}{z_{1}^{\prime}}$
$\mathrm{s}=20$
Area of $\triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{20 \times 5 \times 7.5 \times 7.5} \mathrm{~cm}^{2}$
$=75 \mathrm{~cm}^{2}$
$\frac{1}{2} \times$ longest side \times smallest
altitude $=$ Area of $\triangle A B C$
$\frac{1}{2} \times 15 \mathrm{~cm} \times \mathrm{h}=75 \mathrm{~cm}^{2}$
$\mathrm{h}=75 \mathrm{~cm}^{2} \times \frac{2}{15 \mathrm{~cm}}$
$\mathrm{h}=10 \mathrm{~cm}$
19. (D) $999999999^{2}-1=(99,99,99,999)^{2}-1^{2}$

$$
\begin{aligned}
& =(99,99,99,999+1)(99,99,99,999-1) \\
& =(1,00,00,00,000 \times 999999998 \\
& =999999998 \times 10^{9}
\end{aligned}
$$

20. (A) $\frac{125 x^{3}}{64}-\frac{75 x^{2}}{8}+15 x-8$
$=\left[\left(\frac{5 x}{4}\right)^{3}-3 \times \frac{25}{8} x^{2}+3 \times 5 x-2^{3}\right]$
$=\left[\left(\frac{5 x}{4}\right)^{3}-3 \times \frac{25}{16} x^{2} \times 2+3 \times \frac{5}{4} x \times 4-2^{3}\right]$
$=\left[\left(\frac{5 x}{4}\right)^{3}-3\left(\frac{5 x}{4}\right)^{2}(2)+3 \times \frac{5 x}{4} \times 2^{2}-2^{3}\right]$
$=\left(\frac{5 x}{4}-2\right)^{3}$
$=\left(\frac{5 x}{4}-2\right)^{2}\left(\frac{5 x}{4}-2\right)$
$=\left[\frac{25}{16} x^{2}-\not 2 \times \frac{5}{4} \not z^{2} \times \not 2+2^{2}\right]\left(\frac{5 x}{4}-2\right)$
$=\left(\frac{25 x^{2}}{16}-5 x+4\right)\left(\frac{5 x}{4}-2\right)$.
21. (C) On y-axis at the x-coordinates are zero
$\therefore \quad 2(0)-3 y=6$
$-3 y=6$
$y=\frac{6}{-3}=-2$
$\therefore \quad$ Required point $=(0,-2)$
22. (D)

$\therefore \quad$ The coordinate of A, B, C and D are (5, $0),(4,3),(-2,4)$ and $(0,-2)$ respectively.
23. (B) Let the common factor of both be $(x+\mathrm{k})$

Given $(x+\mathrm{k})$ is a factor of $\mathrm{p}(x)$ $=x^{2}+5 x+p$
$\therefore \quad \mathrm{p}(-\mathrm{k})=0 \Rightarrow(-\mathrm{k})^{2}+5(-\mathrm{k})+\mathrm{p}=0$
$k^{2}-5 k+p=0$
Similarly $9(-k)=0$
$\Rightarrow \quad(-k)^{2}+3(-k)+q=0$
$k^{2}-3 k+q=0$
From (1) \& (2) $k^{2}-5 k+p=k^{2}-3 k+q$ $p-q=2 k$
$\mathrm{k}=\left(\frac{\mathrm{p}-\mathrm{q}}{2}\right)$
Substitute $\mathrm{k}=\left(\frac{\mathrm{p}-\mathrm{q}}{2}\right)$ in eq (1)
$\left(\frac{p-q}{2}\right)^{2}-5\left(\frac{p-q}{2}\right)+p=0$
$(p-q)^{2}=2(3 p-5 q)$
24. (C) Side of each tile are $36 \mathrm{~cm}, 29 \mathrm{~cm} \& 25 \mathrm{~cm}$

$$
\begin{aligned}
\therefore \quad & S=\frac{a+b+c}{2}=\frac{(36+29+25)}{2} \mathrm{~cm} \\
& S=45 \mathrm{~cm} \\
& \text { Area of each tile } \\
& =\sqrt{S(s-a)(s-b)(s-c)} \\
& =\sqrt{45 \times 9 \times 16 \times 20} \mathrm{~cm}^{2} \\
& =\sqrt{5 \times 9 \times 9 \times 4 \times 4 \times 5 \times 2 \times 2} \mathrm{~cm}^{2} \\
& =5 \times 9 \times 4 \times 2 \mathrm{~cm}^{2} \\
& =360 \mathrm{~cm}^{2}
\end{aligned}
$$

$\therefore \quad$ Area of 16 tiles $=360 \mathrm{~cm}^{2} \times 16$
$=5760 \mathrm{~cm}^{2}$
$\therefore \quad$ Total cost for polishing
$=5760 \operatorname{sth}^{2} \times \frac{80 \text { paise }}{1 \mathrm{smh}^{2}}$
$=₹ 576 \varnothing \times \frac{8 \varnothing}{1 \varnothing \varnothing}$
= ₹ 4608
25. (B) Given $r=A C=53 \& L B=90^{\circ}$

$$
\begin{array}{ll}
\therefore \quad & A C^{2}=A B^{2}+B C^{2} \\
& 53^{2}=45^{2}+B C^{2} \\
& 53^{2}-45^{2}=B C^{2} \\
& (53+45)(53-45)=B C^{2} \\
& 98 \times B C^{2}
\end{array}
$$

$$
\sqrt{49 \times 16}=B C
$$

$$
B C=7 \times 4=28
$$

Area of the rectangle $A B C D=A B \times B C$
$=45 \times 28 \mathrm{~cm}^{2}$
$=1260 \mathrm{~cm}^{2}$

PHYSICS

26. (C) The gravitational force that the moon exerts on the planet is equal in magnitude to the gravitational force that the planet exerts on the moon (Newton's third law).
27. (D) As per Newton's $3^{\text {rd }}$ law, the same force pulls both the trolleys. Let mass of X and Y be 2 m and m respectively.

Force on X is $\mathrm{ma}=$ Force on Y is ma .
$\therefore \quad 2 \mathrm{~m} \times 2=\mathrm{m} \times \mathrm{a}$
So, $a=4 \mathrm{~m} / \mathrm{s}^{2}$ i.e., $4 \mathrm{~m} / \mathrm{s}^{2}$ is the initial acceleration of Y .
28. (A) The K.E is maximum at point Q . The total energy is the same at all the points.
29. (D) In the first case:

Initial velocity, $\mathrm{u}=0$
Final velocity, $\mathrm{v}=6 \mathrm{~m} \mathrm{~s}^{-1}$
Time, $\mathrm{t}=30 \mathrm{~s}$
Acceleration $\mathrm{a}=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}}$
Substituting the given values of u, v and t in the above equation, we get
$a=\frac{\left(6 \mathrm{~m} \mathrm{~s}^{-1}-0 \mathrm{~m} \mathrm{~s}^{-1}\right)}{30 \mathrm{~s}}=0.2 \mathrm{~m} \mathrm{~s}^{-2}$
In the second case :
Initial velocity, $u=6 \mathrm{~m} \mathrm{~s}^{-1}$
Final velocity, $v=4 \mathrm{~m} \mathrm{~s}^{-1}$
Time, $t=5 \mathrm{~s}$
Then, $\mathrm{a}=\frac{\left(4 \mathrm{~m} \mathrm{~s}^{-1}-6 \mathrm{~m} \mathrm{~s}^{-1}\right)}{5 \mathrm{~s}}=-0.4 \mathrm{~m} \mathrm{~s}^{-2}$
The acceleration of the bicycle in the first case is $0.2 \mathrm{~m} \mathrm{~s}^{-2}$ and in the second case, it is $-0.4 \mathrm{~m} \mathrm{~s}^{-2}$.
30. (B) Due to inertia of motion, the water in the tank would move forward on sudden application of the brake.
31. (B) $\frac{1}{2} m v^{2}=1500$
$\mathrm{m}=\frac{1500 \times 2}{10^{2}}=30 \mathrm{~kg}$
$K . E=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \times 30 \times 40^{2}=24000 \mathrm{~J}$
Increase in Kinetic energy
$=24000-1500=22500 \mathrm{~J}$
32. (C) Distance travelled = Area under the speed-time graph. If the object is moving with constant speed, its speed-time graph must be a horizontal straight line.

Distance covered is equaled to the area under the straight line.
33. (B) Inertia is the property of mass that resists changes in motion. A body at rest tends to remain at rest.
34. (D) The principle of conservation of energy states that the total energy of a system remains constant. The total energy includes the internal energy. The total of $K E$ and PE at the end is 0 .
35. (C) Density of iron, $\mathrm{d}=7.8 \times 10^{-3} \mathrm{~kg} / \mathrm{m}^{3}$ Volume of iron piece,
$V=100 \mathrm{~cm}^{3}=100 \times 10^{-6} \mathrm{~m}^{3}=10^{-4} \mathrm{~m}^{3}$
Mass of iron piece,
$M=V \times d=\left(10^{-4} \mathrm{~m}^{3}\right) \times\left(7.8 \times 10^{-3} \mathrm{~kg} / \mathrm{m}^{3}\right)$ $=0.78 \mathrm{~kg}$

Weight of iron piece,
$\mathrm{W}=\mathrm{Mg}=(0.78 \mathrm{~kg})\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)=7.8 \mathrm{~N}$
(b) Upthrust, $\mathrm{F}_{\mathrm{B}}=$ Weight of water displaced $=$ Volume of water displaced \times Density of water $\times \mathrm{g}$
$=$ Volume of iron piece \times density of water $\times g$ (volume of water displaced = Volume of iron piece)
$=\left(10^{-4} \mathrm{~m}^{3}\right)\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)=1 \mathrm{~N}$
(c) Apparent weight $=$ true weight of iron piece - upthrust on iron piece in water $=W-F_{B}=7.8 \mathrm{~N}-1 \mathrm{~N}=6.8 \mathrm{~N}$.

CHEMISTRY

36. (C) Equal volumes contain equal no. of molecules. Hence, no. of atoms of $\mathrm{H}_{2}, \mathrm{He}$, O_{2} and O_{3} will be in the ratio $2: 1: 2: 3$.
37. (B) Mass $\%=\frac{\text { Mass of solute }}{\text { Mass of solute }+ \text { Solvent }}$
(A) \quad Mass $\%=\frac{5}{5+95} \times 100=5$
(B) $\mathrm{Mass} \%=\frac{15}{150} \times 100=10$
(C) $\mathrm{Mass} \%=\frac{10}{200} \times 100=5$
(D) $\mathrm{Mass} \%=\frac{25}{400} \times 100=6.25$

15 g of oxalic acid present in 150 g of its aqueous solution has maximum mass percentage.
38. (B)
(i) Molecular mass of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
$=6 \times$ at. mass of $\mathrm{C}+5 \times$ at. mass of $\mathrm{H}+$ $1 \times$ at. mass of $C+$ at. mass of $\mathrm{O}+$ at. mass of $\mathrm{O}+$ at. mass of H
$=6 \times 12.0 u+5 \times 1.0 u+1 \times 12.0 u+16 u$
$+16 u+1.0 u$
$=72+5+12+16+16+1=122 u$
(ii) Molecular mass of $\mathrm{Al}_{2} \mathrm{O}_{3}$ $=2 \times$ at. mass of $A l+3 \times$ at. mass of O
$=2 \times 27 u+3 \times 16 u=102 u$
(iii) Molecular mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
$=2 \times$ at. mass of $\mathrm{Na}+$ at. mass of $\mathrm{S}+4 \times$ at. mass of O
$=2 \times 23 u+32 u+4 \times 16 u=142 u$.
39. (C) Statements I, II and VI are true.
40. (D) An ice cube and water have mass and occupy space, so they are matter.

An ice cube has a definite shape and a definite volume, so it is a solid.

Water has a definite volume but has no definite shape, so it is a liquid.
41. (D) With chlorine, phosphorus forms PCl_{3} and $\mathrm{PCl}_{5} . \mathrm{NH}_{4}^{+}$ion is a cation and is made up of N and H which are non-metal atoms.
42. (D) The solubility of a solid in water as solvent will increase if you increase the temperature of water.
43. (A)
(i) Molecular mass of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
$=12 \times$ At. mass of $\mathrm{C}+22 \times$ At. mass of H
$+11 \times$ At. mass of O
$=12 \times 12.0 u+22 \times 1.0 u+11 \times 16.0 u=$ $144+22+176 u=342 u$.
(ii) Molecular mass of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
$=2 \times$ At. mass of $A l+3 \times$ [At. mass of S
$+4 \times$ At. mass of O]
$=2 \times 27.0 u+3 \times(32.0 u+4 \times 16.0 u)$
$=54 u+3(32+64) u=54+3 \times 96 u=54$
$+288 u=342 u$.
(iii) Molecular mass of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
$=$ At. mass of $\mathrm{Cu}+$ At. mass of $\mathrm{S}+4 \times$ At. mass of $\mathrm{O}+5 \times(2 \times$ At. mass of $\mathrm{H}+1 \times$ At. mass of O)
$=63.5 u+32.0 u+4 \times 16.0 u+5(2 \times 1.0$
$u+16.0 u$)
$=63.5+32.0+64.0+90.0 u=249.5 u$.
44. (D) The solubility of NaCl remains the same i.e., $=35^{\circ} \mathrm{C}$ at all temperatures.
45. (A) Lower the melting points of substances, weaker or lower are the interparticle forces of attraction.

Higher the melting points of substances, stronger or higher are the interparticle forces of attraction. The increasing order of four substances P, Q, R and S based on their interparticle forces of attraction is $\mathrm{P}\left(78{ }^{\circ} \mathrm{C}\right), \mathrm{R}\left(100{ }^{\circ} \mathrm{C}\right), \mathrm{S}\left(168{ }^{\circ} \mathrm{C}\right)$ and $\mathrm{Q}\left(262^{\circ} \mathrm{C}\right)$.

BIOLOGY

46. (C) X-Granulocytes and Y-Agranulocytes.
47. (A) The longest animal cell is nerve cell.
48. (C) Leucoplasts are the colourless plastids which store starch/protein and lipids in them.
49. (B) Rhinoviruses causes common cold.
50. (D) The functions performed by ribosomes are:
(i) It helps in the synthesis of enzymes.
(ii) It helps in synthesis of protein molecules.
51. (B) The scientific name of an organism include genus and species.
52. (B) Dendrites receives impulses.
53. (C) Through crop rotation with leguminous crops, nitrogen can be replenished in soil naturally. The leguminous plants, like peas, beans, soybeans, peanuts, etc., have nitrogen-fixing bacteria in their root nodules. For example, the nitrogenfixing bacteria, viz., Rhizobium, fixes atmospheric nitrogen $\left(\mathrm{N}_{2}\right)$ into ammonium $\left(\mathrm{NH}_{4}^{+}\right)$which is used by the plants.
54. (D) The steps involved in the carbon cycle are: Photosynthesis, respiration, and burning of fossil fuels.
55. (D) Afforestation, contour ploughing, and step farming prevents soil erosion.

CRITICAL THINKING

56. (C) Except option (C) rest all can be drawn without lifting the pen.

57. (A) The moon cannot support life because it does not have an atmosphere and is not goologically active.
58. (A) WTSXZY (The first three components attached are WTS)

59. (D)

60. (C) From I, we conclude that 1st, 8th, 15th, 22 nd and 29th of June 2020 were Mondays.

So, the last Monday fell on 29th.
From II, we conclude that 30th June, 2010 was Tuesday. Thus, 29th June 2020 was the last Monday of the month.

